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Summary

An experiment is described in which a spatially periodic,
time-invariant electric field is used to create a spatially
periodic cellular flow by the action of an electric shear
stress in the region of a fluid-fluid interface. The cellu-
lar motion is closely related to large-amplitude interfacial
deformations observed when an electric field stresses the
interface between two fluids having nearly the same electrical
conductivity. A simple theoretical model is.developed for the
cell streamlines, flow velocity, and distribution of electric
potential, and this model is shown to be in agreement with the

experimental observations.
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I. Introduction

There have been a number of investigations concerned with
the instability of a fluid-fluid interface in the presence of

(1-4)

electric fields. For the majority of this work, attention
is limited to small-amplitude interfacial deformations, as is
appropriate in predicting the onset of instability. Under certain
conditions, large-scale deformations of an electrically stressed
interface have been observed to be dynamically stable. With a
constant-amplitude electric field imposed perpendicular to an
initially planar interface, the shape and position of these defor-
mations are nearly stationary. Qualitatively, one can distinguish
between at least two deformation types. If the imposed field is |
alternating at a sufficiently high frequency that the interface
cannot respond parametrically and supports a negligible free sur-
face charge, the interface deforms into an array of stationary
spikes with rounded tips. 1In this case the fluid, as well as the
interface, appears to be static. In consequence of the fact that
the polarization force acting in this situation is everywhere normal
to the interface, the bulk of the fluid is also static.(s)
Figure 1 shows a second type of deformation found when the

interface between acetophenone and glycerin is stressed by an elec-

tric field. In general, the size of these deformations is also



proportional to the intensity of the applied field. However,
the fluid deformations in this case are not quite stationary.
The situation appears very much like a congregation of seals with
smoothly rounded heads pointed skyward. As the '"seals'" socialize,
the heads move gently up and down, and sway back and forth.(6)
Careful e¢xamination shows that the fluids above and below the
interface are in motion. There is no clear threshold for the
appearance of the deformations as the electric field is raised.
The mechanism for this ''quasi'" stationary state is believed
to be closely related to the existence of interfacial electrical
shearing tractions that give rise to cellular convection in the
bulk of the fluid adjacent to the deformed interface. These shear
tractions are possible because the fluids conduct electrically to
approximately the same degree. The cellular convection is consis-

(7)

tent with the work of Taylor, McEwan, and DeJong who have observed
cells in and around a spherical drop of fluid stressed by an applied
electric field.

It is recognized at the outset that the large-amplitude equi-
libria are made possible by nonuniformities in the electric field.
Much of the complication in providing a theoretical picture of the
phenomena arises because these nonuniformities are brought about
by the deformations themselves. In the work presented here, cellu-
lar convection is studied by deliberately imposing a nonuniformity
in the electric field. An experiment is described in which a
spatially periodic, time-invariant electric field is used to create
a spatially periodic cellular flow by the action of an electric
stress in the region of a fluid-fluid interface. The experiment
is arranged in such a way as to allow the establishment of this
flow without significant deformation of the interface. The self-
consistent effects of interface distortion needed to understand
fully the equilibria shown in Fig. 1 represent a further compli-

cation that will not be developed here.
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The geometry of the model is shown in Figure 2. There are
two slightly-conducting fluids above a segmented electrode along
which is impressed a sinusoidally-distributed, time-independent
electrical potential Vocos(wx/z). The fluid-fluid interface is
considered to remain parallel to and at a fixed distance above
the conducting electrode. The region above the interface extends
to infinity, and gravity is taken as acting in the minus y direc-
tion. The parameters and variables are to be denoted either by a
subscript or superscript a or b; a indicating variables associated
with the region above the interface, and b those in the region below.
Finally, the flow considered is restricted to be two-dimensional -
that is, no variation in the z-direction. The cells produced in
this case are of the simplest type realizable, and are called by
Chandrasekhar ''roll cells".(s)

There are two essential aspects, namely: one of the fluids is
in electrical contact with the electrodes used to establish the
electric field, and the charge relaxation process dominates charge
convection. The first condition prevents induced charge from
forming at the fluid-fluid interface in such a way as to eliminate
the shear stress of electrical origin; the second condition implies
that the electric field is not dependent on the fluid motion. This
in turn implies that the electric field is essentially determined
only by the electrode structure, fluid-fluid interface geometry,
and the electrical properties of the fluids. Under these conditions,
the applied electric field creates a shear stress at the fluid-fluid
interface which induces the fluid motion, and an equilibrium flow
is established when the electrical stress is balanced by the viscous

stress arising from this fluid motion.

Theoretical Médel: Equations and Boundary Conditions

Because the fluids are assumed to be slightly-conducting, there
are no large currents which could produce significant magnetic fields.

Therefore, the magnetic field will be assumed negligible and the
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electric field E satisfies the equations

VXE =0 _ (1)

and

V- €eE q (2)
where q is the free charge density and € is the permittivity.

Conservation of free charge requires

V-J+23q/dt = 0 (3)

where J is the free current density. For an observer at rest
relative to a material particle, Ohm's law in the form J' = oE'
is assumed to be valid (the primes indicate variables in the
1oca1‘f1uid reference frame and o is the conductivity). This

constituent law expressed in the laboratory is
J = oE +qv (%)

(9)

where v is the velocity of the fluid.
The physical laws which govern the motion are conservation
of mass

Ve pv + 3p/dt = 0 (5)

and conservation of momentum in the form

pg_Z" =~V + pgy) + wv + (6)

where p is the mass demsity, p is the hydrodynamic pressure, g is

the magnitude of the acceleration due to gravity, p is the fluid

viscosity (considered constant), ?(e) is the force density of
electrical origin, and %E = -%E + v-:V. For a fluid, the form

of the force of electrical origin is given by

) _ 7 _ 1z 1 Oey 7. %
f = qE 5 E ‘EVe + v[2 p(ap)TE E] (7)



where the subscript T indicates an isothermal process. The
derivation of this force density is carried out in detail in
the various texts.(lo)
An initial simplification of this model may be made by con-
sideration of how charge relaxation behaves in the presence of

charge convection; equations (2) - (5) may be combined to obtain
LDocqpy + 2@y = o0 (8)
Dt P £ p) =

For every fluid particle, the charge relaxation mechanism operates
in spite of the presence of charge convection to force the quan-
tity q/p to relax to zero as exp-(o/e)t. The'free charge must
vanish in the interior independently of the fluid motion. The
convection process may alter the charge distribution in space,
but cannot change the relaxation time €/o0 associated with the
relaxation of the free charge density.

With q equal to zero in the bulk of the fluids, the two
bulk coupling terms q; and qE in equations (4) and (6) are zero;
therefore the field and fluid must couple in the interface region
as specified by the necessary boundary conditions. One further
simplification may be effected by incorporating the electrostric-
tion term of equation (7) into the pressure term of the equation

of motion (6), by defining an effective pressure 7 such that

v=p+pgy—%p(g—§)TE~E (9)
Examination of the bulk equations reveals that there are 12
boundary conditions, four for the electric field and eight for the
velocity. The condition that the electric field and velocity must
vanish as y—»o0 provides one of the four electric field conditions
and two of the eight fluid conditions; hence the remaining nine
conditions must be obtained at the interface and the conducting

electrode. The model requires the normal and shear velocities at



the electrode be zero and the normal velocities at the interface to
be zero. For the electric field, the tangential component is
required to be continuous at the interface, and the normal compo-
nent of current in the fluid must satisfy continuity at the
interface. In addition, the field must match the potential applied
to the electrode. The preceding comprises seven conditions; contin-
uity of tangential velocity and the total shear stress at the interface
are the remaining conditions. Of the boundary conditions, the two
which provide the coupling mechanisms are of the greatest interest,
namely: conservation of charge and continuity of the total shear
stress at the interface. The condition for conservation of charge

is written in the form (11)

H.(Ea—ib) + Vg - Qv + aQ/at = 0 (10)

where Q is the surface charge density, n is the unit normal for the
interface directed from region b to region a and VZ-Q; is the sur-
face divergence of surface current density Q;. It is assumed that
the fluid properties in the region of the fluid-fluid interface are
the same as those for fluid in the bulk, and hence there is

no surface current due to a conduction mechanism (i.e., due to the
presence of a surface conductivity). It therefore follows that the
only surface currents allowed in this model occur as convection of
free surface charges. The condition on the total shear stress may
be obtained from a stress tensor representation of the right-hand

side of equation (6), as follows:

7 - v.T 11
ftotal veT (11)

where

=11
il




and T is the unit tensor of second order. The vector traction

acting on an element of the fluid-fluid interface is
T = (TP-T).n (13)

Letting the subscript s denote the tangential direction, the condi-

tion on the total chear stress is

avi avz v < a a
+ — + = -
u'a Ox dx Hp ox dx 8aEsEn te
) n s n

b_b
bEsEn (14)
where X and x are variables in the normal and shear directions
respectively. Recalling that v, is zero along the interface, this

reduces to

b

b_b
EXEy (15)

= — ¢ E3E2 + ¢
axy b

X

u'ay—“u‘bay
In those cases for which the convection of charge may be neglected
(second term in Eq. 10), the field is completely uncoupled from the
fluid motion and is determined only by the electrode potential and
fluid-fluid interface geometry. This means the problem separates
under these conditions into two parts: first, the solution of a
linear field problem, and second, determination of the fluid flow
produced by the imposed electric field. The field induces this flow
through the action of the electric shear stress at the fluid-fluid
interface, as given by Equation (15). Expressing the equations for
the model in non-dimensional form secures three-dimensionless para-
meters; the ordinary Reynolds’ number

Ry = _%EXL. (16)

which is a measure of the importance of the convective inertial term

(12)

relative to the viscous term uVZV , the electric Reynolds’ number



Eu

Re = .y (17)

which is a measure of the importance of the charge convection
relative to charge conduction, and the interaction parameter

' s = Ll (18)

EV

which is a measure of the electromechanical energy conversion.
The quantities u, £, and v are respectively the characteristic
velocity, length, and electric potential. From Buckingham’s

(13

T-theorem there exists a functional relation between these

parameters, say

S = S (Re, Ry) (19)

This indicates for the special case that Re and Ry approach zero,
S becomes a constant, and the velocity must be proportional to the
square of the applied potential. In the experiment associated with
this model, interest was confined to an investigation of the steady
state corresponding to this limiting case. Therefore, in the fol-
lowing analvytical solution, steady state is assumed and the two
terms, pv -Vv and Vz-(QV , are neglected. This allows the separa-
tion of the problem as indicated. The range of validity of this
solution is given in terms of the Reynolds’ numbers as Re< 1 and

Ry <1.



ITIT. Solution for the Case Re < 1 and Ry < 1

With the field uncoupled from fluid motion, a scalar po-
tential is used to facilitate the field solution. Defining
the potential such that E=-Vp and recalling that q = 0,
Egs. (1) and (2) indicate @ must satisfy Laplace's equation,

V"9 =0 (20)

in each of the fluid regions. The solutions matching the

boundary conditions are

LE -
p? = —;9 e_7X cos ("%/ 1) (21)
and
b ZEO Ua -
P = — [cosh("Y/ ) - P sinh("/2)] cos(" /1)
b
(22)
where WVO 4 Oa | 1
E =—= [cosh("“/2) + =2 sinh("%/2) ]
o) 2 %

The electric field, given by — V@, is as shown in Fig. 3.

The field induces the flow by the action of the electri-
cal shear stress at the interface. The electric shear stress
(which is proportional to ExEy) must have a periodic variation
in the x-direction with a period which is half the period of
the field variation. The spatial period of the flow should be
half that of the field. As with the field equations, it is
convenient to solve for the fluid motion using an auxiliary

function. Hence,
- dy .
SR P (23)

- . 14
where ¥ is the z component oi the vector stream functlon.( )

This satisfies conservation of mass.
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Substitution of Eq. (23) into the curl of Eq. (6) -- with pv-Vv
omitted -- yields

vty = 0 (24)

the biharmonic equation.
The restriction to a flow which is periodic in the x-direc-

tion suggests a solution of the form o

v = £(y) sin(*™¥/0) (25)

The function f£(y) must satisfy the equation
d 2
[ - ] o = o (26)

and choosing solutions which satisfy the boundary conditions at

infinity obtains, for the upper fluid,

-2y
£ = U + 2 ye /e (27)
and, in the lower fluid,
£ -y [Fc? + cgy)cosh(zvy/ﬂ) +
(cg + cZy)sinh(zvy/Bﬂ (28)

To facilitate the determination of the constants using the
remaining boundary conditions, the following procedure will be
applied. First, the continuity condition on the x-components at

the fluid-fluid interface will be satisfied by requiring

a _ b _ . 27X
ve = Vv, = U sin( ™%/ 1) (29)

The condition on the normal components at the fluid-fluid
interface and the condition of no-slip and no normal flow at the
electrode surface are applied next, to obtain a solution for the

fluid motion in terms of U(the maximum
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velocity at the fluid-fluid interface). The final condition on
the total tangential shear stress is then used to couple the field
and flow solutions by relating U to the potential amplitude VO.

The solution in terms of U is given by

ay/d

42 = Uye sin (ax/d) (30)
and
Wb - U -a(y4-d)sinh(ay/g) + yzsinh a sinh[a(l+v/d)] sin ax/d
sinh™a — a
(31)
where
: a = 2rd/¢

Application of equation (23) obtains the velocity components in
terms of U. Finally, equation (15) is used to relate the velocity
U to the amplitude of the applied potential Vo ; substituting and

rearranging terms yields

T * %2%b. .2
U = gl (55— )A-—")
AEub € 0y  © (32)
where
c M H
g(a,2, &) = (sinhza-az)/{z 2 (sinhza—a2)+ sinh 2a —2a]-
g, U W
b b b
a %, o 2
[cosh 5 + 5 sinh > ] }

b

The form of this result is in agreement with the dimensional analysis

which indicated for Re and Ry approaching zero that

2
S £
U— 5(0,0) w VO (33)

Examination of this result for U shows that the sense of the steady

state flow (i.e., the sign of U) is determined by the ratio of the
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time constants which characterize the charge relaxation process
in the two regions. The factor g is always positive, assuming the
essentially positive nature of the fluid parameters. This fact is
readily apparent when it is noted that the function.sinh o —a

is always positive for a > 0. A sketch of this function for
v o
2 f = 0.2915 and —f = 0.01515 is shown in Figure 4. In the ex-
b b
periment, the depth d of the lower layer of fluid was chosen so
the maximum value of this geometrical factor was attained; this
in turn gives the maximum velocity at the interface for a given

value of Vo' The stream lines for the flow are shown in Figure 5.

Experiment and Results

The arrangement of an experiment to demonstrate the above
theoretical explanation of the cellular flow is given in Figure 6.
The fluids are contained within a pyrex tank attached to an insula-
ting base which supports the electrode structure for the applied
potential. The electrodes are electrically connected to a resis-
tance bridge, which in turn is connected to the high voltage power
supply as shown in Figure 6. An insulating top which supports a
free electrode is used to approximate the boundary conditions (i.e.,
no-slip and vanishing field) at infinity. The electrode structure
consists of equal area brass foil strips whose width and spacing
were chosen to give a good fit to the continuum electrode of the
theory and still not support arcing at the largest experimental
voltages. The inner dimensions of the tank are 4.000 inches X
0.965 inches X 2.05 inches deep. The electrodes are 1.600 inches
X 0.200 inches X 0.002 inches brass foil strips. The resistance
bridge is constructed of 22 megohm resistors.

To observe the flow, a syringe was used to entrain small-
diameter bubbles of air in the fluid. These small bubbles were then
injected into the fluid in a plane along the center of the tank, and

as near as possible to the fluid-fluid interface. The two fluids
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used were Mazola corn oil and Dow Corning FS-1265 silicone oil.
The properties of these fluids as used in the calculations are
listed in Table 1. These two fluids are transparent, with the
corn oil exhibiting a slight straw color, and the Dow Corning
FS-1265 being colorless. In order to obtain the necessary flow
data without creating a disturbance of the electric field, a
photographic technique was used. Under intense illumination, fhe
bubbles appeared as brighter points of light, and left distinct
images on the film. Using a calibrated shutter and keeping the
times of exposure short yielded accurate data for the determination
of the magnitudes of the velocity at various points of the flow.
The assumption of a two-dimensional flow was observed to be well
satisfied in the central plane of the tank. Long time exposures
were also obtained after a steady flow was reached; these films
gave a good record of the actual streamlines of the flow.

As the bubbles dissipated, it was observed that the flow
occurring in the tank remained unaffected; hence, it was concluded
that the presence of even a large quantity of bubbles did not sig-
nificantly distort the fluid motion. Two major disadvantages in
using the bubbles were that they had, of necessity, to be renewed -
periodically; and, further, their motion due to the buoyancy force
set the lower limit on the usable flow data which could be deter-
mined accurately. For the given experimental geometry and parameters,
this lower boundary occurred at approximately V0 = 0.4kv, which cor-
responds to a maximum field intensity along the interface of
2.74(104)V/m. The upper limit on the range of voltages used was an
instability of the fluid-fluid interface which took the form of
filaments of the Dow Corning FS-1265 erupting along the electric
field lines in the regions of maximum field intemnsity. This in-

stability occurred at approximately V0 = 8.1 kv, which corresponds
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to a maximum field intensity along the interface of 5.46(105) y .
The results of the experiment are presented in the form o? a
streak photograph which gives the streamlines of the observed flow
and a plot of U versus V as measured compared with the model predic-
tion of Eq. (32). In the experiment, as indicated in Figure 6, V
is the peak-to-peak applied potential associated with the electrode
structure and resistance bridge. To relate this voltage to. the
amplitude Vo of the theoretical model, it is assumed that VO cor-
responds to the fundamental Fourier component of a triangular wave
of amplitude V/2 and spatial period 2 . This assumption yields

vV = (4/Wz) Y (34)

o

and for the data of Table 1, equation (32) becomes

U = 0.045 v (35)

where U is in millimeters per second and V is in kilovolts. The
streak photograph is shown in Figure 7, and the U vs V plots are

given in Figure 8,

Conclusions

In comparing the actual flow streamlines with those predicted
by the theoretical model as shown in Figure 5, it is seen that the
general form including the sense of the flow agrees well; but there
are some differences. 1In particular, the actual surface is slightly
deformed and the presence of the end walls and tank top has caused
the cell appearance to differ from that seen in Figure 5. The
agreement between the measured values of U and those predicted by
Eq. (32)(the curve marked theoretical with VO = 4V/7r2) is good;
the parabolic dependence with V is very evident, and the fact that
the experimental curve falls below the theoretical curve may be

explained by consideration of the finite extent of the fluid (i.e.,
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the effects of tank walls) and by examination of the Reynolds'
numbers. The electric Reynolds' number Re for both fluids satis-
fied the condition Re<1l; for a velocity of U = 1 millimeters per

second and £ = 3.4(10_2) meters

a -2
Ré = 1.6 (10 ) , corn oil
and b -4
Re = 5.5 (10 ) , silicone oil

For the ordinary Reynolds' number Ry and the same characteristic

values

R§ = 0.57 , corn oil
and b

Ry = 0.13 , silicone oil

In the corn oil, the ordinary Reynolds' number is equal to unity

for a velocity 1.7 mm/s, and the experimental data begins to deviate
significantly when U > 2mm/s. This implies that the convective
inertial term pV Vv is becoming important in the flow; further,

the fact that even at values of R? > 1 there is agreement is not
unusual, as this is also the case for Stokes' and Oseen's solutions

(15)

for the problem of the sphere. In general, the theoretical
model is successful in predicting the flow in the range for which
Re< 1 and Ry < 1, and appears to yield a reasonable explanation for
the observed continuum electromechanical interaction present in the

experiment.
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DOW CORNING MAZOLA CORN

FLUID PARAMETER FS-1265 OIL

Dielectric constant, &/, 6.95 3.1
- - -
Conductivity, o  (Lrwm) 3.3 (1077) 0.5 (1071%
Specific gravity 1.25 0.91
Kinematic viscosity, ¥ (cs.) 300 60
-}

Absolute viscosity, /l kg('ﬂS) 0.375 0.0546

Table 1. Nominal room temperature (20-2500) fluid properties
used in the theoretical calculations.
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Figure 2
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Cross-sectional view indicating the fluid-fluid inter-

face and the conducting electrode. The electrode is in

electrical contact with the fluid in the region below

the interface.
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Figure 3 Cross-sectional view showing the lines of force for the
electric field. It should be noted that the field lines
shown were chosen to indicate clearly the refraction
through the fluid-fluid interface; as a consequence,
the density of the field lines in any portion of the
diagram does not relate to the field intensity in the

usual way.
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Figure 4 A plot of the geometrical factor g(o) versus a for the

specific values 2u_/u, = 0.2915 and oa/ob = 0.01515.
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Figure 5 Streamlines of the flow for a = 1.67, 2lg/ub = 0.2915
and Ga/cb = 0.01515. The streamfunction is normalized

to unity at the vortex axis in the upper cells.
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Figure 6 a) Schematic diagram of experimental tank.

b) Side view of tank,. showing connection of electrodes
and resistance bridge to power supply. The relative lo-
cation of the fluid-fluid interface above the electrodes

and insulating base is indicated in the cross-section.
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THEORETICAL —

| L 1 |
4 8 12 6 20
V IN KILOVOLTS

Plot showing U in millimeters per second versus V in

kilovolts for the experiment using Mazola corn oil and

Dow Corning FS-1265 silicone oil. The curve marked

"theoretical' is from Eq. (32) with V= 4V/Trz and the

fluid paparmeters of Table 1.



